
Silencing of hypoxia-inducible factor-1� gene attenuates chronic ischemic
renal injury in two-kidney, one-clip rats

Zhengchao Wang,1,2 Qing Zhu,1* Pin-Lan Li,1 Romesh Dhaduk,1 Fan Zhang,1 Todd W. Gehr,3

and Ningjun Li1
1Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University,
Richmond, Virginia; 2Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal
University, Fuzhou, People’s Republic of China; and 3Department of Medicine, Division of Nephrology, Medical College of
Virginia Campus, Virginia Commonwealth University, Richmond, Virginia

Submitted 18 December 2013; accepted in final form 4 March 2014

Wang Z, Zhu Q, Li PL, Dhaduk R, Zhang F, Gehr TW, Li N.
Silencing of hypoxia-inducible factor-1� gene attenuates chronic
ischemic renal injury in two-kidney, one-clip rats. Am J Physiol Renal
Physiol 306: F1236–F1242, 2014. First published March 12, 2014;
doi:10.1152/ajprenal.00673.2013.—Overactivation of hypoxia-induc-
ible factor (HIF)-1� is implicated as a pathogenic factor in chronic
kidney diseases (CKD). However, controversy exists regarding the
roles of HIF-1� in CKD. Additionally, although hypoxia and HIF-1�
activation are observed in various CKD and HIF-1� has been shown
to stimulate fibrogenic factors, there is no direct evidence whether
HIF-1� is an injurious or protective factor in chronic renal hypoxic
injury. The present study determined whether knocking down the
HIF-1� gene can attenuate or exaggerate kidney damage using a
chronic renal ischemic model. Chronic renal ischemia was induced by
unilaterally clamping the left renal artery for 3 wk in Sprague-Dawley
rats. HIF-1� short hairpin (sh) RNA or control vectors were trans-
fected into the left kidneys. Experimental groups were sham�control
vector, clip�control vector, and clip�HIF-1� shRNA. Enalapril was
used to normalize blood pressure 1 wk after clamping the renal artery.
HIF-1� protein levels were remarkably increased in clipped kidneys,
and this increase was blocked by shRNA. Morphological examination
showed that HIF-1� shRNA significantly attenuated injury in clipped
kidneys: glomerular injury indices were 0.71 � 0.04, 2.50 � 0.12, and
1.34 � 0.11, and the percentage of globally damaged glomeruli was
0.02, 34.3 � 5.0, and 6.3 � 1.6 in sham, clip, and clip�shRNA
groups, respectively. The protein levels of collagen and �-smooth
muscle actin also dramatically increased in clipped kidneys, but this
effect was blocked by HIF-1� shRNA. In conclusion, long-term
overactivation of HIF-1� is a pathogenic factor in chronic renal injury
associated with ischemia/hypoxia.
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REDUCED RENAL TISSUE OXYGEN levels have been demonstrated in
a large variety of chronic kidney diseases (CKD) in both
human patients and in experimental animal models. Hypoxia in
CKD results from a combination of structural and functional
changes (12, 36). As a result, hypoxia-inducible factor
(HIF)-1� has been reported to be consistently upregulated in
almost all types of CKD (7, 16, 17, 36–38). However, it is
unclear whether upregulation of HIF-1� is beneficial or dele-
terious in progressive CKD. HIF-1� is a transcription factor
and has been shown to stimulate collagen accumulation (7, 15,

43, 44) and promote the epithelial-to-mesenchymal transition
(EMT) (11, 35), an important mechanism involved in the
progression of CKD (3, 33, 57, 67). Therefore, although
upregulation of HIF-1� is protective in acute kidney injury (9,
18, 37, 53), ample evidence indicates that long-term overacti-
vation of HIF-1� may be a pathogenic factor in CKD (10, 16,
21, 24, 36, 45).

Previous studies have shown that genetic ablation of renal
epithelial HIF-1� inhibits the development of renal tubuloin-
terstitial fibrosis in unilateral ureteral obstruction rats (15) and
that overexpression of HIF-1� in tubular epithelial cells pro-
motes interstitial fibrosis in 5⁄6 nephrectomy mice (23). We
have also reported that silencing HIF-1� gene expression
attenuates angiotensin II-induced profibrotic effects and trans-
forming growth factor (TGF) �1-induced EMT in renal cells in
vitro and in vivo (13, 62, 71). A more recent study has shown
that increasing HIF-1� level exacerbates the kidney damage in
a rat model of hypertension induced by a high-salt diet and
nitric oxide withdrawal (5). Taken together, these studies
suggest that overactivation of HIF-1� is an injurious factor in
CKD.

However, there have been controversial reports regarding
the role of HIF-1� in CKD. Induction of HIF-1� by CoCl2
ameliorates the renal injury in rats with nephritis (60) and
hypertensive type 2 diabetes (46). In contrast to the deleterious
effects of overexpressed HIF-1� in 5⁄6 nephrectomy mice (23),
other reports have shown that upregulation of HIF-1� by
pharmacological agents protects the kidneys using the same 5⁄6
nephrectomy model of CKD (6, 56, 59). Thus more detailed
investigations are required regarding the role of the HIF-1�
pathway in CKD under different situations.

Because of these disparate observations, it is imperative to
clarify the role of HIF-1� in CKD. This clarification is critical
for the application of HIF-1� activation or inhibition as a
potential therapeutic strategy. The present study was to further
elucidate whether ischemia-induced activation of HIF-1� is a
beneficial or injurious factor in chronic kidney damage. We
used a two-kidney, one-clip (2K1C) rat model treated with an
angiotensin-converting enzyme (ACE) inhibitor so as to elim-
inate the possible effect of activation of the renin-angiotensin
system in this model. By using this model, we attempted to
minimize other impacts and evaluate the effect of increased
HIF-1� on chronic renal injury in clipped kidneys. The present
study determined whether silencing HIF-1� gene expression
by short hairpin (sh) RNA attenuates or exaggerates renal
injury in the clipped kidneys in 2K1C rats. To our knowledge,
the present study provides the first direct evidence that chronic
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ischemic/hypoxic activation of HIF-1� produces chronic kid-
ney damage.

MATERIALS AND METHODS

Animals. Experiments were performed using male Sprague-Dawley
rats (250–350 g, Harlan, Madison, WI) with free access to food and
water throughout the study. All animal procedures were approved by
the Institutional Animal Care and Use Committee of Virginia Com-
monwealth University.

Plasmids expressing rat HIF-1� shRNA. Predesigned rat HIF-1�
siRNA was purchased from Sigma-Aldrich. Sequences of HIF-1�
siRNA were sense, GGA AAG AGA CUC AUA GAA A; and
antisense, UUU CUA UGA CUC UCU UUC C. After confirmation of
effective knockdown of HIF-1� genes by these siRNAs in cultured rat
renal cells, the sequences were constructed into a pRNA-CMV3.2
vector (Genscript, Piscataway, NJ) to produce shRNA. The effective
silencing of the renal HIF-1� gene by shRNA in vivo was verified in
our previous studies (62, 71). Plasmids expressing luciferase were
used in control animals.

Transfection of DNA into the kidney. DNA was transfected into the
rat kidneys as we described previously (66, 71). In brief, rats were
anesthetized with 2% isoflurane, and 50 �g of plasmids mixed with 8
�l of in vivo jetPEI (Polyplus Transfection, New York, NY) in 10%
glucose (600 �l) were injected into the kidneys via the left renal artery
when the renal artery and vein were temporarily blocked (�5 min).
After injection, an ultrasound transducer (Sonitron 2000, Rich-Mar)
was applied directly onto the kidney with an output of 1 MHz at 10%
power for a total of 60 s with 30-s intervals, and then the renal artery
and vein were unblocked to recover renal blood flow. This technique
has been shown to effectively deliver DNA into the renal cells without
toxicity to the kidney (26, 27, 41, 66, 71). The transfection reagent in
vivo jetPEI, a polyethylenimine derivative, has been used to success-
fully deliver DNA into renal cells in vivo in previous studies,
including ours (8, 29, 34, 63, 69, 70). In addition, a combination of
ultrasound and different transfection reagents (19, 30, 40), including
polyethylenimine nanoparticles (4), has been shown to significantly
enhance the DNA transfection. We showed before that the expression
of a transgene in the kidney peaked on around days 5–7 and gradually
decreased thereafter, while the mRNA levels in transfected animals
remained 4.5 times higher than that in control animals 4 wk after
transfection (66). The in vivo expression time period of the transgene
in our studies is consistent with reports by others using nonviral
vectors and different DNA delivery methods, which have shown that
in vivo overexpression of transgenes lasts for at least 2 or 4 wk (41,
52, 65). In addition, it has been shown that by using DNA-based small
interfering (si) RNA expression vectors, target gene knockdown can
endure for 20 wk in vivo (64). We therefore utilized this technique for
in vivo gene silencing in the kidneys.

Induction of chronic renal ischemia in the left kidney. To produce
chronic renal ischemia, the 2K1C model was utilized. In the same
surgery as above, after DNA transfection, the left renal artery was
clipped by placing of a U-shaped silver clip with an internal diameter
of 0.30 mm as described before (14, 28). The same surgical proce-
dures were performed in sham rats, in which the clips were removed
in the surgical procedures. Three groups of animals were included:
sham�control plasmids, clip�control plasmids, and clip�HIF-1�
shRNA plasmids.

Chronic monitoring of arterial blood pressure in conscious rats. A
telemetry transmitter (Data Sciences International) was implanted for
the measurement of mean arterial blood pressure (MAP) as we
described previously (31). One week after clamping the renal artery,
all clipped rats showed increases in MAP, indicating a successful
generation of the model, and then an ACE inhibitor enalapril (5
mg·kg�1·day�1) was given in drinking water for the rest of the
experiment. Two weeks later, animals were humanely euthanized and
kidneys were removed. The clipped kidneys were cut longitudinally.

Half of the kidney was fixed in 10% neutral buffered formalin and the
other half frozen in liquid N2 and stored in �80°C.

Preparation of tissue homogenate and nuclear extracts and West-
ern blot analyses for protein levels of HIF-1�, collagen I/III, and
�-smooth muscle actin. Renal tissue homogenates and nuclear protein
were prepared, and Western blot analyses were performed as we
described previously (32). Primary antibodies used in the present
study included anti-rat HIF-1� (monoclonal, 1:300 dilution, Novus
Biologicals), collagen I/III (rabbit polyclonal, 1:300, Calbiochem),
and �-smooth muscle actin (�-SMA; rabbit polyclonal, 1:1,000,
Abcam). The intensities of the blots were determined using an imaging
analysis program (ImageJ, free download from http://rsbweb.nih.
gov/ij/).

Morphological and immunohistochemical analysis. The fixed kid-
neys were paraffin-embedded and cut into 4-�m sections. For mor-
phological analysis, the tissue sections were stained with periodic
acid-Schiff (PAS). Glomerular damage was morphologically evalu-
ated by two independent examiners who were blinded as to animal
groups. The damage was semiquantitatively scored based on the
degree of glomerular damage as described previously (39, 51). In
brief, a minimum of 50 glomeruli in each specimen were examined,
and the severity of the lesion was graded from 0 to 4 according to the
percentage of glomerular involvement. Thus 0 	 normal; 1 	 1–25%
of glomerular area involved; 2 	 26–50%; 3 	 51–75%; and 4 	

75% of tuft area involved. The averaged scores from counted
glomeruli were used as the glomerular damage index for each animal.

Immunostaining was performed as we described before (32) using
antibodies against rat �-SMA (rabbit polyclonal, 1:200, Abcam).
Collagen I/III was stained using picro sirius red, and the percentage of
positive-stained area was calculated using a computer program (Im-
age-Pro Plus) as described previously (61).

Statistics. Statistics were performed using SigmaStat. Data are
presented as means � SE. The significance of differences in mean
values within and among three experimental groups was evaluated
using ANOVA, and any significant differences revealed by this
procedure were further investigated using appropriate post hoc tests as
indicated in results. P � 0.05 was considered statistically significant.

RESULTS

Changes in arterial pressure. MAP was significantly in-
creased in 2K1C rats, suggesting the successful generation of a
renal ischemic model (Fig. 1). Treatment with an ACE inhib-
itor, enalapril, normalized MAP in clipped rats (Fig. 1), which
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Fig. 1. Changes in mean arterial blood pressure (MAP). Angiotensin-convert-
ing enzyme-1 (ACEI) indicates the start of enalapril treatment. *P � 0.001 vs.
other 2 groups by 2-way repeated measures ANOVA (n 	 7).
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eliminated the potential impact of the activated angiotensin
system on renal injury in clipped kidneys.

Effects of HIF-1� shRNA on hypoxia-induced HIF-1� ac-
cumulation in clipped kidneys. To confirm the successful
inhibition of HIF-1� accumulation in the clipped kidneys by
shRNA, HIF-1� protein levels were determined. Renal HIF-1�
protein levels were significantly upregulated in clipped kid-
neys. In rats transfected with shRNA plasmids, HIF-1� protein
levels in the clipped kidneys were much lower than that in rats
treated with control vectors in both renal cortical and medul-
lary areas (Fig. 2), indicating a successful inhibition of HIF-1�
accumulation in clipped kidneys.

Effects of HIF-1� shRNA on histological changes in the
glomeruli in clipped kidneys. Morphological analysis showed
significant glomerular damage in clipped kidneys as indicated
by glomerular mesangial expansion with hypercellularity, cap-
illary collapse, and fibrous deposition in glomeruli (Fig. 3A).
The glomerular damage index was substantially greater in
clipped kidneys (Fig. 3B). However, HIF-1� shRNA transfec-
tion significantly attenuated glomerular damage in clipped
kidneys (Fig. 3, A and B). Strikingly, the significantly larger
number of globally damaged glomeruli in clipped kidneys was
dramatically reduced by HIF-1� shRNA (Fig. 4). These results
suggested that activation of HIF-1� mediates ischemia-induced
glomerular injury.

Effects of HIF-1� shRNA on interstitial injuries in clipped
kidneys. The positive staining of collagen and �-SMA in the
outer medulla was used as the index of interstitial injury. The
positive-stained areas of collagens were significantly larger in
clipped kidneys than those in sham rats (Fig. 5). In rats treated
with HIF-1� shRNA, the positive-stained areas of collagens
were much smaller than those in control vector-treated rats
(Fig. 5). The analysis of �-SMA staining showed the same
pattern as that of collagens: the positive-stained areas of
�-SMA in clipped kidneys were much larger compared with
those in sham rats, whereas the positive-stained areas of
�-SMA were significantly less in HIF-1� shRNA-treated rats
compared with control vector-treated rats (Fig. 6). Further
quantitation of collagen I/III and �-SMA expression in the
kidneys by Western blot analyses also showed that the protein
levels of collagens and �-SMA were significantly higher in
clipped kidneys and much lower in the clipped kidneys treated
with HIF-1� shRNA (Fig. 7), which is consistent with the
results of collagen and �-SMA staining (Figs. 5 and 6). These
data demonstrate that HIF-1� activation mediates the fibrotic
damage in the renal tubulointerstitial area in chronic ischemic/
hypoxic renal injury.

DISCUSSION

The present study showed that chronic renal ischemia/hyp-
oxia increased HIF-1� levels and that gene silencing of HIF-1�
significantly attenuated the renal morphological changes and
blocked the upregulation of �-SMA and collagen accumulation
in clipped kidneys. These effects were independent of angio-
tensin II and hypertension. It is suggested that overactivation of
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Fig. 3. Effect of HIF-1� shRNA on morphological changes in the glomeruli in
clipped kidneys. A: representative photomicrographs showing glomerular
structures [periodic acid-Schiff (PAS) staining, �400]. B: summarized glo-
merular damage index by semiquantitation of scores in different groups. *P �
0.001 vs. Clip�Ctrl and P 	 0.003 vs. Sham�Ctrl by 1-way ANOVA with
Tukey’s post hoc test (n 	 7).
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HIF-1� in the kidney is a crucial mediator in chronic renal
injury associated with hypoxia.

Although hypoxia and upregulation of HIF-1� are observed
in a variety of CKD models, there is no direct evidence
whether HIF-1� is an injurious or protective factor in kidney

damage under chronic hypoxic conditions. Different CKD
models may exhibit complex mechanisms and signaling path-
ways as well as interactions among the signaling pathways. It
may therefore be difficult to eliminate other factors and dissect
the effects of HIF-1� in these CKD models. The model used in
the present study has been shown to produce hypoxia in the
kidneys (49, 50). By using this model, we attempted to mini-
mize other possible influences on kidney damage in addition to
ischemia-induced HIF-1� accumulation. It is well known that
the 2K1C model activates the renin-angiotensin system and
increases angiotensin II levels (1). Angiotensin II significantly
affects renal function and has been shown to cause kidney
damage (2, 38, 54). Normalization of MAP by enalapril indi-
cated that the potential effect of angiotensin II on chronic renal
injury was minimized in the present study. It allowed us to
evaluate the effect of HIF-1� with minimal influence of other
factors on the kidney damage in clipped kidneys, although we
could not totally rule out the possible effects of other factors,
if any. It should be noted that ACE inhibition has been shown
not to improve the reduced oxygenation in the clipped kidney
in the 2K1C model (49, 50), and therefore ACE inhibition
would not affect HIF-1� levels beyond its action on the
angiotensin II system in the present study.

The present study showed that chronic ischemia/hypoxia
caused an increase in HIF-1� levels, which was accompanied
by both glomerular and tubulointerstitial damage in clipped
kidneys. Analyses of the glomerular damage index and the
percentage of globally damaged glomeruli showed that chronic
ischemia produced glomerular injury and that inhibition of
HIF-1� expression substantially attenuated glomerular injury
in clipped kidneys, demonstrating that activation of HIF-1�
importantly participated in the glomerular injury under isch-
emic conditions. In addition, it has been shown that renal

0

10

20

30

40

%
 g

lo
ba

lly
 d

am
ag

ed
  . 

gl
om

er
ul

i

*

A 

B 

Fig. 4. Effect of HIF-1� shRNA on the percentage of globally damaged glom-
eruli in clipped kidneys. A: representative photomicrographs showing glom-
eruli (PAS staining, �100). B: calculated percentage of globally damaged
glomeruli. *P � 0.001 vs. other 2 groups by 1-way ANOVA with Tukey’s post
hoc test (n 	 7).

0

5

10

15

20

Sham+
Ctrl

   Clip+  
Ctrl

Clip+
shRNA

C
ol

la
ge

n 
po

si
tiv

e 
ar

ea
 (%

)

B 

A 

*

Fig. 5. Effect of HIF-1� shRNA on collagen I/III staining in clipped kidneys.
A: representative photomicrographs showing staining of collagens in outer
medulla (red color). B: calculated percentage of positively stained area. *P 	
0.009 vs. Clip�Ctrl and P 	 0.004 vs. Sham�Ctrl by 1-way ANOVA with
Tukey’s post hoc test (n 	 6).

A 

B 

0

5

10

15

20

Sham+
Ctrl

  Clip+ 
Ctrl

Clip+
shRNA

SM
A 

po
si

tiv
e 

ar
ea

 (%
)

*

Fig. 6. Effect of HIF-1� shRNA on �-smooth muscle actin (SMA) staining in
clipped kidneys. A: representative photomicrographs showing staining of
�-SMA in outer medulla (brown color). B: calculated percentage of positively
stained area. *P � 0.001 vs. Clip�Ctrl and P 	 0.029 vs. Sham�Ctrl by
1-way ANOVA with Tukey’s post hoc test (n 	 7).

F1239HIF-1� AND CHRONIC KIDNEY DAMAGE

AJP-Renal Physiol • doi:10.1152/ajprenal.00673.2013 • www.ajprenal.org



tubulointerstitial damage contributes to the progression of
chronic renal injury. The present study also demonstrated that
inhibition of HIF-1� expression blocked tubulointerstitial
damage as indicated by the abolition of the increase in collagen
I/III and �-SMA expressions in clipped kidneys in HIF-1�
shRNA-treated rats. These results suggest that overactivation
of HIF-1� is a pathogenic factor producing both glomerular
and tubulointerstitial damage in the kidneys under chronic
ischemic conditions.

There is a limitation in the present study in that the improve-
ment in histological damage in the clipped kidney was not
verified by renal functional parameters. The present study
wanted to limit other influences and focus on the role of
HIF-1� in chronic kidney damage. The assessment of single
kidney function of the clipped kidney requires anesthesia,
surgery, and instrumentation of the kidneys, which may sig-
nificantly complicate the measurements. Despite lack of sup-
port by functional parameters, the dramatic recovery in the
histological parameters in HIF-1� shRNA-treated rats provides
compelling evidence of an injurious effect of HIF-1� overac-
tivation in the kidneys under chronic ischemic conditions.

An interesting finding in the present study was that HIF-1�
shRNA blocked the increase in �-SMA levels in the clipped
kidneys. �-SMA is a well-known marker of cell transdifferen-
tiation, including the EMT and fibroblast activation into myo-
fibroblasts. Cell transdifferentiation importantly contributes to
the progression of CKD (3, 21, 33, 57, 67). Although in vitro
studies have shown that hypoxia induces cell transdifferentia-
tion via HIF-1� in renal cells (58, 68), the present study, for the
first time, provided in vivo evidence that ischemia-induced
HIF-1� mediates cell transdifferentiation in kidneys. These

data suggest that the HIF-1� pathway may be involved in the
relatively early stage of the profibrotic process in chronic
hypoxic renal injury.

The present study demonstrated that chronic ischemia-in-
duced overactivation of HIF-1� in the kidney mediates chronic
renal damage. It is important to notice that HIF-1� overacti-
vation can be stimulated by many other mechanisms indepen-
dently of oxygen levels, such as oxidative stress and proin-
flammatory factors (13, 20, 22, 47, 48, 55, 62). These oxygen-
independent mechanisms are well known to participate in
chronic kidney damage in a variety of CKD. Therefore, the
observation in the present study may be applied to other types
of CKD and indicate that HIF-1� is very possibly also a crucial
mediator of kidney damage in pathological conditions associ-
ated with HIF-1� activation independently of hypoxia.

The results of the present study did not provide an explana-
tion of the reason some previous reports have provided evi-
dence that HIF-1� accumulation is a beneficial factor in CKD.
It is interesting to note that all the studies using genetic
approaches to locally manipulate HIF-1� levels within the
kidneys demonstrate that HIF-1� is an injurious mediator and
that almost all reports using pharmacological approaches to
systemically increase HIF-1� levels show that HIF-1� is a
protective factor. A more recent study demonstrated that glob-
ally genetic activation of HIF-1� suppressed renal inflamma-
tion and fibrogenesis in mice subjected to unilateral ureteral
obstruction and that HIF-1� activation exhibited an anti-in-
flammatory effect, which was associated with inhibition of
inflammatory cell recruitment by myeloid cell-derived HIF-1�
(25). This study suggested that cell type-specific action of
HIF-1� may impact inflammation and fibrosis differentially.
The beneficial effect of HIF-1� activation by pharmacological
approaches may be produced by actions outside the kidneys.
Therefore, local and global activation of HIF-1� may play
different roles in the progression of CKD, which requires
further investigation. Nevertheless, the present study provided
strong evidence that long-term overactivation of HIF-1� within
the kidney mediates renal damage.

In summary, the present study demonstrated that inhibition
of HIF-1� overactivation in the kidneys attenuated renal injury
under chronic ischemic/hypoxic conditions. It is suggested that
overactivation of HIF-1�-mediated gene regulation in the kid-
ney may constitute a pathogenic pathway mediating renal
injury under various pathological conditions associated with
ischemia and that normalization of overactivated HIF-1� in the
kidneys may be a useful strategy in the treatment of chronic
kidney damage associated with elevated levels of HIF-1�.
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